Theoretical analysis of the thermal effects during in vivo tissue electroporation.
نویسندگان
چکیده
Tissue electroporation is a technique that facilitates the introduction of molecules into cells by applying a series of short electric pulses to specific areas of the body. These pulses temporarily increase the permeability of the cell membrane to small drugs and macromolecules. The goal of this paper is to provide information on the thermal effects of these electric pulses for consideration when designing electroporation protocols. The parameters investigated include electrode geometry, blood flow, metabolic heat generation, pulse frequency, and heat dissipation through the electrodes. Basic finite-element models were created in order to gain insight and weigh the importance of each parameter. The results suggest that for plate electrodes, the energy from the pulse may be used to adequately estimate the heating in the tissue. However, for needle electrodes, the geometry, i.e. spacing and diameter, and pulse frequency are critical when determining the thermal distribution in the tissue.
منابع مشابه
Finite Element Analysis of Tissue Conductivity during High-frequency and Low-voltage Irreversible Electroporation
Introduction: Irreversible electroporation (IRE) is a process in which the membrane of the cancer cells are irreversibly damaged with the use of high-intensity electric pulses, which in turn leads to cell death. The IRE is a non-thermal way to ablate the cancer cells. This process relies on the distribution of the electric field, which affects the pulse amplitude, width, and electrical conducti...
متن کاملA Multi Objective Genetic Algorithm (MOGA) for Optimizing Thermal and Electrical Distribution in Tumor Ablation by Irreversible Electroporation
Background: Irreversible electroporation (IRE) is a novel tumor ablation technique. IRE is associated with high electrical fields and is often reported in conjunction with thermal damage caused by Joule heating. For good response to surgery it is crucial to produce minimum thermal damage in both tumoral and healthy tissues named Non-Thermal Irreversible Electroporation(NTIRE). Non-thermal irrev...
متن کاملA comprehensive theoretical study of thermal relations in plant tissue following electroporation
Electroporation is the application of electric pulses of sufficient amplitude to target tissue, which entails not only permeabilization of cell membranes, but also heat generation and dissipation. Noticeable rises in temperature have been observed in a number of electroporation applications. These temperature rises are a potential source of alteration of thermodynamic properties of tissue where...
متن کاملResistive heating and electropermeabilization of skin tissue during in vivo electroporation: A coupled nonlinear finite element model
The use of electric pulses to increase cell membrane permeability – electroporation – has, among other applications also been used on skin for (a) enhanced transdermal molecular delivery or (b) the delivery of drugs or DNA into viable skin cells. Based on finite element numerical method, we theoretically described skin electropermeabilization and the amount of heating in and around an electrica...
متن کاملNumerical Analysis of the Thermal Interaction of Cell Phone Radiation with Human Eye Tissues
Introduction: The present study aimed to present a numerical analysis of the penetration depth, specific absorption rate (SAR), and temperature rise in various eye tissues with varying distance between radiation source and exposed human eye tissues (i.e., cornea, posterior chamber, anterior chamber, lens, sclera, vitreous humor, and iris) at frequencies of 900 and1800 MHz. Materials and Method...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioelectrochemistry
دوره 61 1-2 شماره
صفحات -
تاریخ انتشار 2003